3.4.21 \(\int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [321]

3.4.21.1 Optimal result
3.4.21.2 Mathematica [A] (verified)
3.4.21.3 Rubi [A] (warning: unable to verify)
3.4.21.4 Maple [B] (verified)
3.4.21.5 Fricas [B] (verification not implemented)
3.4.21.6 Sympy [F]
3.4.21.7 Maxima [F]
3.4.21.8 Giac [F(-1)]
3.4.21.9 Mupad [B] (verification not implemented)

3.4.21.1 Optimal result

Integrand size = 31, antiderivative size = 131 \[ \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {a-i b} (A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} (A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d} \]

output
-2*A*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))*a^(1/2)/d+(A-I*B)*arctanh((a+ 
b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))*(a-I*b)^(1/2)/d+(A+I*B)*arctanh((a+b*ta 
n(d*x+c))^(1/2)/(a+I*b)^(1/2))*(a+I*b)^(1/2)/d
 
3.4.21.2 Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.67 \[ \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )-\frac {\left (A \left (b^2+a \sqrt {-b^2}\right )+b \left (a-\sqrt {-b^2}\right ) B\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {-b^2}}}\right )}{\sqrt {-b^2} \sqrt {a-\sqrt {-b^2}}}+\frac {\left (A \left (b^2-a \sqrt {-b^2}\right )+b \left (a+\sqrt {-b^2}\right ) B\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+\sqrt {-b^2}}}\right )}{\sqrt {-b^2} \sqrt {a+\sqrt {-b^2}}}}{d} \]

input
Integrate[Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 
output
-((2*Sqrt[a]*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]] - ((A*(b^2 + a*Sq 
rt[-b^2]) + b*(a - Sqrt[-b^2])*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a 
- Sqrt[-b^2]]])/(Sqrt[-b^2]*Sqrt[a - Sqrt[-b^2]]) + ((A*(b^2 - a*Sqrt[-b^2 
]) + b*(a + Sqrt[-b^2])*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + Sqrt[ 
-b^2]]])/(Sqrt[-b^2]*Sqrt[a + Sqrt[-b^2]]))/d)
 
3.4.21.3 Rubi [A] (warning: unable to verify)

Time = 0.99 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.90, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.387, Rules used = {3042, 4095, 3042, 4022, 3042, 4020, 25, 73, 221, 4117, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))}{\tan (c+d x)}dx\)

\(\Big \downarrow \) 4095

\(\displaystyle \int \frac {A b+a B-(a A-b B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+a A \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A b+a B-(a A-b B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+a A \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4022

\(\displaystyle -\frac {1}{2} (a+i b) (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a-i b) (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+a A \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {1}{2} (a+i b) (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a-i b) (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+a A \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {i (a-i b) (B+i A) \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}+\frac {i (a+i b) (-B+i A) \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+a A \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {i (a-i b) (B+i A) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {i (a+i b) (-B+i A) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+a A \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {(a+i b) (-B+i A) \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {(a-i b) (B+i A) \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+a A \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 221

\(\displaystyle a A \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+\frac {\sqrt {a-i b} (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d}-\frac {\sqrt {a+i b} (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {a A \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}+\frac {\sqrt {a-i b} (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d}-\frac {\sqrt {a+i b} (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 a A \int \frac {1}{\frac {a+b \tan (c+d x)}{b}-\frac {a}{b}}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {\sqrt {a-i b} (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d}-\frac {\sqrt {a+i b} (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt {a-i b} (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d}-\frac {\sqrt {a+i b} (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d}-\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{d}\)

input
Int[Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 
output
(Sqrt[a - I*b]*(I*A + B)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/d - (Sqrt[a + 
 I*b]*(I*A - B)*ArcTan[Tan[c + d*x]/Sqrt[a + I*b]])/d - (2*Sqrt[a]*A*ArcTa 
nh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/d
 

3.4.21.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4095
Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1 
/(a^2 + b^2)   Int[Simp[A*(a*c + b*d) + B*(b*c - a*d) - (A*(b*c - a*d) - B* 
(a*c + b*d))*Tan[e + f*x], x]/Sqrt[c + d*Tan[e + f*x]], x], x] - Simp[(b*c 
- a*d)*((B*a - A*b)/(a^2 + b^2))   Int[(1 + Tan[e + f*x]^2)/((a + b*Tan[e + 
 f*x])*Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, 
 x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 
3.4.21.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(975\) vs. \(2(107)=214\).

Time = 0.24 (sec) , antiderivative size = 976, normalized size of antiderivative = 7.45

method result size
derivativedivides \(\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {2 A \,\operatorname {arctanh}\left (\frac {\sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {a}}\right ) \sqrt {a}}{d}\) \(976\)
default \(\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {2 A \,\operatorname {arctanh}\left (\frac {\sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {a}}\right ) \sqrt {a}}{d}\) \(976\)

input
int(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x,method=_RETURNVER 
BOSE)
 
output
1/4/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/ 
2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/4/d/b*ln(b*tan(d*x+c 
)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))* 
B*(a^2+b^2)^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/4/d/b*ln(b*tan(d*x+c)+a+ 
(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2 
*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2* 
(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2 
*a)^(1/2))*A*(a^2+b^2)^(1/2)-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*( 
a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2* 
a)^(1/2))*A*a+1/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c 
))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B-1 
/4/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)- 
a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/4/d/b*ln((a+b*tan(d*x 
+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B 
*(a^2+b^2)^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/4/d/b*ln((a+b*tan(d*x+c)) 
^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2* 
(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2* 
(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2* 
a)^(1/2))*A*(a^2+b^2)^(1/2)+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*( 
a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-...
 
3.4.21.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1218 vs. \(2 (101) = 202\).

Time = 0.53 (sec) , antiderivative size = 2452, normalized size of antiderivative = 18.72 \[ \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm= 
"fricas")
 
output
[-1/2*(d*sqrt(-(2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b 
 + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(2*(A^3*B 
+ A*B^3)*a + (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + (B*d^3*sqrt(-(4*A^2 
*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) + (2* 
A^2*B*a + (A^3 - A*B^2)*b)*d)*sqrt(-(2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 + 
4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a) 
/d^2)) - d*sqrt(-(2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a 
*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(2*(A^3* 
B + A*B^3)*a + (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) - (B*d^3*sqrt(-(4*A 
^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) + ( 
2*A^2*B*a + (A^3 - A*B^2)*b)*d)*sqrt(-(2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 
+ 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)* 
a)/d^2)) - d*sqrt(-(2*A*B*b - d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3) 
*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(2*(A^ 
3*B + A*B^3)*a + (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + (B*d^3*sqrt(-(4 
*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - 
 (2*A^2*B*a + (A^3 - A*B^2)*b)*d)*sqrt(-(2*A*B*b - d^2*sqrt(-(4*A^2*B^2*a^ 
2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2 
)*a)/d^2)) + d*sqrt(-(2*A*B*b - d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^ 
3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(...
 
3.4.21.6 Sympy [F]

\[ \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {a + b \tan {\left (c + d x \right )}} \cot {\left (c + d x \right )}\, dx \]

input
integrate(cot(d*x+c)*(a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)
 
output
Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))*cot(c + d*x), x)
 
3.4.21.7 Maxima [F]

\[ \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {b \tan \left (d x + c\right ) + a} \cot \left (d x + c\right ) \,d x } \]

input
integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm= 
"maxima")
 
output
integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*cot(d*x + c), x)
 
3.4.21.8 Giac [F(-1)]

Timed out. \[ \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm= 
"giac")
 
output
Timed out
 
3.4.21.9 Mupad [B] (verification not implemented)

Time = 10.09 (sec) , antiderivative size = 9785, normalized size of antiderivative = 74.69 \[ \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

input
int(cot(c + d*x)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2),x)
 
output
(A*a^(1/2)*atan(((A*a^(1/2)*((32*(a + b*tan(c + d*x))^(1/2)*(A^4*b^12 + B^ 
4*b^12 + 2*A^2*B^2*b^12 + 3*A^4*a^4*b^8 + 2*B^4*a^2*b^10 + B^4*a^4*b^8 + 6 
*A^2*B^2*a^2*b^10 - 8*A^3*B*a^3*b^9))/d^4 + (A*a^(1/2)*((32*(3*A^3*a^2*b^1 
0*d^2 + 3*A^3*a^4*b^8*d^2 + B^3*a^3*b^9*d^2 + B^3*a*b^11*d^2 - 15*A^2*B*a* 
b^11*d^2 - 9*A*B^2*a^2*b^10*d^2 - 9*A*B^2*a^4*b^8*d^2 - 15*A^2*B*a^3*b^9*d 
^2))/d^5 + (A*a^(1/2)*((32*(a + b*tan(c + d*x))^(1/2)*(10*B^2*a^3*b^8*d^2 
- 18*A^2*a^3*b^8*d^2 + 16*A*B*b^11*d^2 - 6*A^2*a*b^10*d^2 + 6*B^2*a*b^10*d 
^2 + 24*A*B*a^2*b^9*d^2))/d^4 - (A*a^(1/2)*((32*(12*A*a*b^10*d^4 + 12*A*a^ 
3*b^8*d^4))/d^5 - (32*A*a^(1/2)*(16*b^10*d^4 + 24*a^2*b^8*d^4)*(a + b*tan( 
c + d*x))^(1/2))/d^5))/d))/d))/d)*1i)/d + (A*a^(1/2)*((32*(a + b*tan(c + d 
*x))^(1/2)*(A^4*b^12 + B^4*b^12 + 2*A^2*B^2*b^12 + 3*A^4*a^4*b^8 + 2*B^4*a 
^2*b^10 + B^4*a^4*b^8 + 6*A^2*B^2*a^2*b^10 - 8*A^3*B*a^3*b^9))/d^4 - (A*a^ 
(1/2)*((32*(3*A^3*a^2*b^10*d^2 + 3*A^3*a^4*b^8*d^2 + B^3*a^3*b^9*d^2 + B^3 
*a*b^11*d^2 - 15*A^2*B*a*b^11*d^2 - 9*A*B^2*a^2*b^10*d^2 - 9*A*B^2*a^4*b^8 
*d^2 - 15*A^2*B*a^3*b^9*d^2))/d^5 - (A*a^(1/2)*((32*(a + b*tan(c + d*x))^( 
1/2)*(10*B^2*a^3*b^8*d^2 - 18*A^2*a^3*b^8*d^2 + 16*A*B*b^11*d^2 - 6*A^2*a* 
b^10*d^2 + 6*B^2*a*b^10*d^2 + 24*A*B*a^2*b^9*d^2))/d^4 + (A*a^(1/2)*((32*( 
12*A*a*b^10*d^4 + 12*A*a^3*b^8*d^4))/d^5 + (32*A*a^(1/2)*(16*b^10*d^4 + 24 
*a^2*b^8*d^4)*(a + b*tan(c + d*x))^(1/2))/d^5))/d))/d))/d)*1i)/d)/((64*(A^ 
5*a*b^12 + A^5*a^3*b^10 + A^2*B^3*a^2*b^11 + A^2*B^3*a^4*b^9 + 3*A^3*B^...